Archives

About Center for Quantum Science

Director:    Indubala Satija  

Faculty:  Yuri Mishin  Phil Rubin  Karen Sauer  Ming Tian    Predrag Nikolic       Erhai Zhao   Krishnamurthy Vemuru 

The Center for Quantum Science at George Mason University gathers researhers from the School of Physics, Astronomy and Computational Sciences whose interests span condensed matter, atomic, molecular and optical physics. The main purpose of the Center is to stimulate the research productivity, interaction and collaboration among its members, create a collective mentoring environment for young researchers, and popularize its research areas to students and the public.

Research at the Center is funded by the National Science Foundation, Office of Navy Research, National Institute of Standards and Technology, Department of Energy, and the Air Force Office of Scientific Research.

Specific research areas include (but are not limited to):

condensed matter physics

superconductivity, quantum magnetism, topological insulators
quantum phase transitions and critical points
quantum field theory of interacting electrons
atomistic modeling and simulation of materials

atomic, molecular and optical physics

ultra-cold atoms, superfluidity, unitarity
optical lattices, quantum simulation, artificial gauge fields
magnetic resonance for materials characterization or for substance detection
quantum magnetometers
laser atomic spectroscopy, nonlinear and quantum optics

inter-disciplinary and applied physics

rare-earth based solid state quantum memory and quantum computation
quantum transport in spintronic and nano-electronic devices
non-linear dynamics

 

 

About CQS Research

Research areas:

( v) Condensed matter physics

 (v) Atomic, molecular and optical physics

 (v) Materials science

(v) High Energy Physics

Condensed matter physics

Condensed matter physics is a major fundamental branch of physics that studies the collective quantum dynamics of strongly interacting particles. Unlike high-energy physics, which focuses on elementary particles and forces as the fundamental building blocks of nature, condensed matter physics views the emergent phenomena arising from correlations and entanglement among many particles as the fundamental ones. Quantum field theory, on which both branches of physics rely, makes no distinction between these fundamental views. Examples of condensed matter researched at CQS are solid-state crystals, superfluids and superconductors, magnets, topological insulators, and ultra-cold gases of trapped atoms.

CQS theorists I.SatijaE.Zhao and P.Nikolic share a common interest in topological insulators. I.Satijahas been working on integer quantum Hall states in lattice potentials, with U(1) and SU(2) gauge symmetry groups, often placed in the context of ultra-cold atoms. Her collaborative work, which included the world-leading experimentalist Ian Spielman of NIST, E.ZhaoP.Nikolic and international collaborators, has resulted with the first proposals to experimentally measure Chern numbers in cold atom band-insulators, and create fermionic time-reversal-invariant topological insulators using cold atoms. She also explores novel topological quantum states that are …